A NOVEL ROUTE TO THIOKETENES BY FLASH VACUUM THERMOLYSIS OF SILVLATED KETENE DITHIOACETALS, SYNTHESIS OF PROPADIENETHIONE.

Yannick Vallée, Serge Masson, and Jean-Louis Ripoll.*

Laboratoire de Chimie des Composés Thioorganiques (UA CNRS n° 480) Université de Caen, 14032 Caen, France.

Flash vacuum thermolysis (fvt) of silylated ketene dithioacetals $\underline{2}$ leads to reactive thioketenes 1. This method, added to a retrodienic reaction, allowed access to propadienethione $\underline{3}$.

Thioketenes <u>1</u>, when devoid of bulky substituents ¹, are very reactive species which have been observed only at low temperatures, and characterized by in situ trapping reactions ². Few methods are available for their synthesis ^{2, 3}. The most usual are : thermolysis of their dimers (desaurins) ³, thermolysis or photolysis of 1,2,3-thiadiazoles ^{4, 5}, and, in the case of thioketene itself (1, R= H) thermolysis of dithioacetic acid ⁵.

Some years ago, the gas phase thermolysis of silylated ketene monothioacetals was investigated 6 as a potential way to thioketenes. However, as in the case of ketene acetals 7 , these reactions led to ketenes. We report herein that monosilylated ketene dithioacetals 2are efficient precursors of thioketenes.

 $R_2C=C \begin{pmatrix} SMe \\ SSiMe_3 \end{pmatrix} \xrightarrow{g_{30} K} R_2C=C=S \\ \hline \underline{a}: R = Me \\ \underline{b}: R_2 = -(CH_2)_4 - \frac{1}{2} \\ \hline \underline{a}, \underline{b} \end{pmatrix}$

Compounds <u>2 a</u>, <u>b</u>⁸ were choosen as representative examples and submitted to fvt experiments. The ir spectrum of their thermolysis products (fvt temperature : 930 K⁹) recorded under vacuum at 77 K, showed the presence of MeSSiMe₃¹⁰, and <u>1 a</u> or <u>1 b</u> (v C=C=S, <u>1 a</u> : 1794 cm^{-1 11}, <u>1 b</u> : 1783 cm^{-1 12}) as the only detectable products ¹³. In addition, trapping of <u>1 a</u> with gaseous dimethylamine injected immediately at the oven exit gave N,N-dimethyl isopropylthio-carboxamide in 65 % yield. In the case of <u>1 b</u> the same reaction conditions gave N,N-dimethyl cyclopentylthiocarboxamide in 25 % yield.

As an extension of this work, we also thermolysed the ketene dithioacetal 2c prepared as above ⁸ from the corresponding dithioester ¹⁴.

In this case, loss of MeSSiMe3 associated with a retrodienic reaction ¹⁵ gave anthracene in nearly quantitative yield and, as the only detectable volatile products, MeSSiMe₃ and propadienethione <u>3</u>. The latter was characterized by its low temperature (77 K) ir spectrum [\circ C=C=C=S 2105 (s) and 2170 cm⁻¹ (m), in good agreement with the values reported for propadienone ¹⁶ and propadieneselone ¹⁷] ¹⁸. Compounds <u>1 a</u>, <u>b</u> and <u>3</u> are very reactive species which rapidly polymerize above 120 K ¹⁹.

References and notes

- ¹ For the synthesis of stable thioketenes see, inter alia : E. Schaumann, and W. Walter ; Chem. Ber., <u>107</u>, 3562 (1974) ; E.U. Elam, F.H. Rash, J.T. Dougherty, V.W. Goodlett and K.C. Brannock ; J. Org. Chem., <u>33</u>, 2738 (1968) ; R. Mayer, and H. Kröber ; Z. Chem., <u>15</u>, 91 (1975) ; and ref ².
- F. Duus, Comprehensive Organic Chemistry, D. Barton and W.D. Ollis Ed., Pergamon Press, Oxford, Vol. 3, 403 (1979); A. Ohno, Organic Compounds of Sulphur, Selenium, and Tellurium; The Royal Society of Chemistry Ed., London, Vol. 6, 158 (1981). See also preceeding volumes in the same series, and D. Borrmann, Houben-Weyl Methoden der organischen Chemie, Georg Thieme Verlag, Stuttgart, Vol. 7/4, 312 (1968).
- ³ G. Seybold, and C. Heibl ; Chem. Ber., 110, 1225 (1977).
- ⁴ A. Krantz, and J. Laureni ; J. Am. Chem. Soc., <u>96</u>, 6768 (1974) ; G. Seybold, and C. Heibl ; Angew. Chem. Int. Ed. Engl., 14, 248 (1975).
- ⁵ H. Bock, B. Solouki, G. Bert, and P. Rosmus ; J. Am. Chem. Soc., <u>99</u>, 1663 (1977).
- ⁶ L. Carlsen, H. Egsgaard, E. Schaumann, H. Mrotzek, and W.R. Klein; J. Chem. Soc. Perkin II, 1557 (1980).
- ⁷ C. Ainsworth, F. Chen, and Y.N. Kuo; J. Organomet. Chem, <u>46</u>, 59 (1972); C. Ainsworth, and Y.N. Kuo; ibid., <u>46</u>, 73 (1972).
- ⁸ Prepared according to R.S. Sukhai, and L. Brandsma ; Synthesis, 455 (1979).
- ⁹ A short path oven was used (1= 10 cm), P= 10⁻⁵ Torr. For more technical details see : Y.M. Malécot, J.L. Ripoll, and A. Thuillier ; J. Chem. Research, S 86, M 0959 (1983).
- ¹⁰ K.A. Hooton, and A.L. Allred ; Inorg. Chem., 4, 671 (1965).
- ¹¹ In good agreement with the previously reported value of 1789 $\rm cm^{-1}$: G. Seybold ; Tetrahedron Lett., 555 (1974).
- ¹² Until now <u>1 b</u> was known only as its adduct with diethyleneglycol : U. Timm, H. Bühl, and H. Meier ; J. Heterocyclic Chem., <u>15</u>, 697 (1978).
- ¹³ The uv visible spectra of the thermolysis products were also recorded at 77 K. An absorption was observed in the 600 nm region (<u>l a</u> : 597, <u>l b</u> : 608 nm) which could be assigned to the n $\longrightarrow \pi^{*}$ thicketene absorption ². However, formation of reddish polymers absorbing in the same region did not allow us to observe the expected disappearance of these bands upon warming.
- ¹⁴ P. Gosselin, S. Masson, and A. Thuillier ; Tetrahedron Lett. 21, 2421 (1980).
- ¹⁵ For a review, see : M.C. Lasne, and J.L. Ripoll ; Synthesis, 121 (1985).
- ¹⁶ R.F.C. Brown, F.W. Eastwood, and G.L. Mc Mullen; J. Am. Chem. Soc., <u>98</u>, 7421 (1976); Aust. J. Chem., <u>30</u>, 179 (1977).
- ¹⁷ W.W. Sander, and O.L. Chapman ; J. Org. Chem., <u>50</u>, 543 (1985).
- ¹⁸ In the low temperature uv visible spectrum of the thermolysis product of 2 c, a transient strong band at 365 nm could be attributed to the $\pi \longrightarrow \pi^*$ absorption of 3; no band observed near 600 nm. An attempt at trapping 3 by HNMe₂ did not permit us to identify N,N-dimethyl thioacrylamide in the complex reaction mixture obtained.
- 19 Full experimental details and further applications will be published later.

(Received in France 10 July 1986)